RIC 2006
Session W3BC
Risk-Informed Regulatory Structure for Future
Reactors

Safety Issues for Advanced Designs

Mark R. Holbrook

Advisory Engineer Idaho National Laboratory

March 8, 2006

Outline

- Introduction
 - Generation IV Nuclear Energy Systems
 - Global Nuclear Energy Partnership (GNEP)
- Designs
 - Very High Temperature Gas Reactor (VHTR)
 - Sodium Cooled Fast Reactor (SFR)
 - Other Sodium Cooled Designs
- Challenges for Advanced Licensing Framework

Generation IV Energy Systems

- Identifies systems deployable by 2030 or earlier
- Specifies systems that offer significant advances towards:
 - Sustainability
 - Economics
 - Safety and reliability
 - Proliferation resistance and physical protection
- Identifies R&D activities and priorities for the systems

Generation IV Energy Systems

	noratiiro	Poset	Ar Sile	
	perature			

VHTR

Selected for Next Generation Nuclear Plant (NGNP)

Sodium-Cooled Fast Reactor System

SFR

Focus for Global Nuclear Energy Partnership (GNEP)

Supercritical-Water-Cooled Reactor System SCWR

Gas-Cooled Fast Reactor System GFR

Lead-Cooled Fast Reactor System LFR

Molten Salt Reactor System MSR

Global Nuclear Energy Partnership (GNEP)

- Developing countries are the next major electric power growth area; will look to developed countries for solutions; they will need:
 - Small increments of electric power (10-50 Mwe)
 - Simple controls and low maintenance power plants
 - Stability in the price of electricity over long time periods
- GNEP Policy
 - Increase US and global energy security
 - Encourage clean development and improve the environment
 - Reduce risk of nuclear proliferation
- GNEP will use fast reactors to recycle spend fuel and extend the life of spent fuel storage facilities

Very-High-Temperature Gas Reactor (VHTR)

Characteristics:

- Helium coolant
- 1000°C outlet temperature
- 600 MWth
- Graphite moderated with prismatic or pebble-bed core
- Thermal neutron spectrum

Benefits:

- Co-generation of hydrogen and electricity
- Efficiency over 50% with excellent economics

Coated particle fuel performance is at the heart of the VHTR safety case

VHTR Safety Focus

- TRISO fuel coating forms first barrier to fission product release
- Coated fuel withstands accident temperatures up to 1600°C
- Large thermal inertia of graphite core results in long time constants for transients
- Power density is balanced with passive heat removal capability to ensure fuel does not exceed 1600°C
- Passive decay heat removal system with multiple heat removal paths

Gen IV Sodium-Cooled Fast Reactor (SFR)

Characteristics:

- Sodium coolant
- 530°C to 550°C outlet temperature
- •200-1500 MWe
- Uses a secondary loop to isolate radioactive sodium

Benefits:

- Management of highlevel waste (Pu and actinides)
- Passive safety characteristics

Other Sodium-Cooled Designs

- Toshiba 4S Reactor
 - Battery heat source design (10-50 Mwe)
 - Long (20-30 year) whole core refueling interval
 - All reactivity feedback coefficients including coolant void reactivity are negative
 - Fully passive decay heat removal system
 - Factory fabrication/barge or rail shippable

Challenges for Advanced Licensing Framework

VHTR Challenges

- Fuel Qualification
 - More aggressive service conditions relative to older designs
 - Previous U.S. experience with fuel fabrication
 - Desire to extend max. accident fuel temperatures to 1800°C
- Containment Design
 - Vented low-pressure containment
- Emergency Planning Zone
 - Desire to limit to site boundary
- Materials Qualification
 - 1000°C outlet temperature exceeds code allowables
 - Need better understanding of material response to neutron dose over plant lifetime

SFR Challenges

- Spent Fuel Reprocessing
 - The licensing requirements will need to accommodate a reactor plant that is part of spent fuel reprocessing facility
 - Reprocessing will create a new set of security challenges
- Passive Safety
 - Ensuring validity of passive characteristics for a non-light water design (e.g., response to licensing-basis transients and anticipated transients without scram)
- Beyond Licensing-Basis Events
 - Ensure that bounding events considered in licensing can be sustained without loss of cooling of fuel or loss of containment function

